内容标题18

  • <tr id='3pT9LK'><strong id='3pT9LK'></strong><small id='3pT9LK'></small><button id='3pT9LK'></button><li id='3pT9LK'><noscript id='3pT9LK'><big id='3pT9LK'></big><dt id='3pT9LK'></dt></noscript></li></tr><ol id='3pT9LK'><option id='3pT9LK'><table id='3pT9LK'><blockquote id='3pT9LK'><tbody id='3pT9LK'></tbody></blockquote></table></option></ol><u id='3pT9LK'></u><kbd id='3pT9LK'><kbd id='3pT9LK'></kbd></kbd>

    <code id='3pT9LK'><strong id='3pT9LK'></strong></code>

    <fieldset id='3pT9LK'></fieldset>
          <span id='3pT9LK'></span>

              <ins id='3pT9LK'></ins>
              <acronym id='3pT9LK'><em id='3pT9LK'></em><td id='3pT9LK'><div id='3pT9LK'></div></td></acronym><address id='3pT9LK'><big id='3pT9LK'><big id='3pT9LK'></big><legend id='3pT9LK'></legend></big></address>

              <i id='3pT9LK'><div id='3pT9LK'><ins id='3pT9LK'></ins></div></i>
              <i id='3pT9LK'></i>
            1. <dl id='3pT9LK'></dl>
              1. <blockquote id='3pT9LK'><q id='3pT9LK'><noscript id='3pT9LK'></noscript><dt id='3pT9LK'></dt></q></blockquote><noframes id='3pT9LK'><i id='3pT9LK'></i>

                东华大学主页

                当前位置:首页 > 东华大学 > 新闻公告 >

                《先进能源材料》发表江莞教授团队在MXene显著提升低温热电器件转化效率方面的最新进展

                2019-12-03 0 新闻公告 来源:东【华大学新闻网

                先进热电转化技术能够实现热能和电能的直接转化,在半△导体制冷、废热发电等领域具有广泛的应用前景。在众多热电材料中,(Bi,Sb)2Te3被认为是最理想的p型热电材料之一,已实现低温热电№制冷应用。然而,商用热电发电模块的热电转化效率仅为5%左右,远低于预期■。

                近日,我校材料学院江莞教授团队针对提升低温热电材料和热电器件转化效率开展▲系列工作,采用自组装复合方法制得新型二维材料MXene (Ti3C2Tx)均匀分散的(Bi,Sb)2Te3复合材料。在300~475 K的温度范围内,复合材料平均ZT从1.05提升到了1.23。此外,通过对器件的♂优化设计,在237 K温差下获得了高达7.8%的能量转换效率,是目前低◎温热电器件报道的最高值。该项成果发表在国际著名期刊《先进能源材料》上,题为“均匀复合MXene以实现(Bi,Sb)2Te3高效热电转¤换” (Adv. Energy Mater., 2019, 1902986, 影响因子24.884);材料学院博士生陆晓芳和中科院上海硅酸盐研究所张骐昊博士为共@同第一作者,东华大学功能材料研究所范宇驰研究员和材料学院王连军教授为共同通讯作者。

                 

                图1. a) Ti3C2Tx/BST热电材料的制备流程示々意图, b) 平均ZT以及c) 热电转化效率图

                研究团队以p型Bi0.4Sb1.6Te3 (BST)为基体,将具有良好◥亲水性的Ti3C2Tx MXene通过粉体自组装与BST粉体复合,并结合放电等离子体♀烧结技术制备得到了Ti3C2Tx均匀分散的Ti3C2Tx/BST复合材料。该方法在实现二维材料均匀分散的同时,成功克↑服了传统制备方法(球磨法和熔炼法)易造成二维材料结构被破坏的缺点。研究发现,Ti3C2Tx的高←导电性可以在异质界面处形成空穴注入,增加基体的电导率;同时,MXene的功函〇数会随着表面端基氧含量的增加而增加,所形成的能带弯曲增强了对低能量载流子的散№射,有效抑制了载流子大量注入下的Seebeck系数降低;另外,纳米片Ti3C2Tx与BST晶粒间新形成的大量界面又会强烈散射中高频↓声子,极大降低晶格热导率,最终实现▲热、电输运的综合调控,提升了热电性能。

                图2. Ti3C2Tx/BST复合材∑料中Ti3C2Tx分布图

                图3. a) Ti3C2Tx/BST的低能量载流子散射机理图 b) 功率因子以及 c) 热导率★变化图

                此项工作有力地证明了二维 MXene作为一种功函数『可调的高导电第二相在热电材料中应用的巨大潜力。通过MXene材料的引入,可●以实现更高的能量转换效率,为高性能复合材料在热电转换技术中的应用开辟了一条崭新的道路。

                文章链接:https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201902986

                视频:   摄影: 撰写:周蓓莹  信息员:星禧  编辑:孙庆华

                未经允许不得≡转载:二九年华大学门※户 » 《先进能源材料》发表江莞教授团队在MXene显著提升低温热电器件转化效率方面的最新进展

                相关推荐

                高考招生

                标签